Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS Med ; 20(5): e1004226, 2023 05.
Article in English | MEDLINE | ID: covidwho-2321856

ABSTRACT

BACKGROUND: Growing evidence suggests an important contribution of airborne transmission to the overall spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in particular via smaller particles called aerosols. However, the contribution of school children to SARS-CoV-2 transmission remains uncertain. The aim of this study was to assess transmission of airborne respiratory infections and the association with infection control measures in schools using a multiple-measurement approach. METHODS AND FINDINGS: We collected epidemiological (cases of Coronavirus Disease 2019 (COVID-19)), environmental (CO2, aerosol and particle concentrations), and molecular data (bioaerosol and saliva samples) over 7 weeks from January to March 2022 (Omicron wave) in 2 secondary schools (n = 90, average 18 students/classroom) in Switzerland. We analyzed changes in environmental and molecular characteristics between different study conditions (no intervention, mask wearing, air cleaners). Analyses of environmental changes were adjusted for different ventilation, the number of students in class, school and weekday effects. We modeled disease transmission using a semi-mechanistic Bayesian hierarchical model, adjusting for absent students and community transmission. Molecular analysis of saliva (21/262 positive) and airborne samples (10/130) detected SARS-CoV-2 throughout the study (weekly average viral concentration 0.6 copies/L) and occasionally other respiratory viruses. Overall daily average CO2 levels were 1,064 ± 232 ppm (± standard deviation). Daily average aerosol number concentrations without interventions were 177 ± 109 1/cm3 and decreased by 69% (95% CrI 42% to 86%) with mask mandates and 39% (95% CrI 4% to 69%) with air cleaners. Compared to no intervention, the transmission risk was lower with mask mandates (adjusted odds ratio 0.19, 95% CrI 0.09 to 0.38) and comparable with air cleaners (1.00, 95% CrI 0.15 to 6.51). Study limitations include possible confounding by period as the number of susceptible students declined over time. Furthermore, airborne detection of pathogens document exposure but not necessarily transmission. CONCLUSIONS: Molecular detection of airborne and human SARS-CoV-2 indicated sustained transmission in schools. Mask mandates were associated with greater reductions in aerosol concentrations than air cleaners and with lower transmission. Our multiple-measurement approach could be used to continuously monitor transmission risk of respiratory infections and the effectiveness of infection control measures in schools and other congregate settings.


Subject(s)
COVID-19 , Respiratory Tract Infections , Child , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Switzerland/epidemiology , Bayes Theorem , Carbon Dioxide , Respiratory Aerosols and Droplets , Schools
2.
Int J Infect Dis ; 119: 38-40, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1889474

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen tests with saliva facilitate examination in settings that lack trained personnel. However, little is known about the diagnostic accuracy in real-life clinical settings. Therefore, we studied the diagnostic accuracy of a saliva antigen test in diagnosing SARS-CoV-2 infection in a primary/secondary care testing facility. METHODS: Individuals who presented at a COVID-19 testing facility affiliated with a Swiss university hospital were prospectively recruited (n=377). Saliva specimen was obtained, and the PCL Inc. COVID19 Gold antigen test was conducted in parallel with 2 real-time polymerase chain reaction (RT-PCR) assays from a nasopharyngeal swab. RESULTS: RT-PCR results were positive in 53 individuals, corresponding to a prevalence of 14.1% (missing material in 1 individual). The PCL saliva antigen test was positive in 22 individuals (5.8%) and negative in 354 (93.9%). The sensitivity of the saliva antigen test was 30.2% (95% confidence interval 18.3, 44.3), both overall and in symptomatic individuals. The specificity was 98.1% (96.0, 99.3). CONCLUSIONS: The diagnostic accuracy of a SARS-CoV-2 saliva antigen test in a primary/secondary care testing facility was remarkably lower than that reported in the manufacturer's specifications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Saliva , Sensitivity and Specificity , Specimen Handling
3.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1511413

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
4.
Int J Infect Dis ; 109: 118-122, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1300809

ABSTRACT

BACKGROUND: Laboratory tests are a mainstay in managing the COVID-19 pandemic, and high hopes are placed on rapid antigen tests. However, the accuracy of rapid antigen tests in real-life clinical settings is unclear because adequately designed diagnostic accuracy studies are essentially lacking. OBJECTIVES: The aim of this study was to assess the accuracy of a rapid antigen test in diagnosing SARS-CoV-2 infection in a primary/secondary care testing facility. METHODS: Consecutive individuals presenting at a COVID-19 testing facility affiliated to a Swiss University Hospital were recruited (n = 1465%). Nasopharyngeal swabs were obtained, and the Roche/SD Biosensor rapid antigen test was conducted in parallel with two real-time PCR tests (reference standard). RESULTS: Among the 1465 patients recruited, RT-PCR was positive in 141 individuals, corresponding to a prevalence of 9.6%. The Roche/SD Biosensor rapid antigen test was positive in 94 patients (6.4%), and negative in 1368 individuals (93.4%; insufficient sample material in 3 patients). The overall sensitivity of the rapid antigen test was 65.3% (95% confidence interval [CI] 56.8-73.1), the specificity was 99.9% (95% CI 99.5-100.0). In asymptomatic individuals, the sensitivity was 44.0% (95% CI 24.4-65.1). CONCLUSIONS: The accuracy of the SARS-CoV-2 Roche/SD Biosensor rapid antigen test in diagnosing SARS-CoV-2 infections in a primary/secondary care testing facility was considerably lower compared with the manufacturer's data. Widespread application in such a setting might lead to a considerable number of individuals falsely classified as SARS-CoV-2 negative.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , COVID-19 Testing , Humans , Pandemics , Sensitivity and Specificity
5.
Microorganisms ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154452

ABSTRACT

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

6.
Allergy ; 76(3): 853-865, 2021 03.
Article in English | MEDLINE | ID: covidwho-804258

ABSTRACT

BACKGROUND: Serological immunoassays that can identify protective immunity against SARS-CoV-2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed-design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS-CoV-2 proteins and assessed the neutralizing activity of antibodies in patient sera. METHODS: Consecutive patients admitted with confirmed SARS-CoV-2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in-house enzyme-linked immunosorbent assay utilizing recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was developed and compared to three commercially available enzyme-linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1), and a lateral flow immunoassay (LFI) based on full-length spike protein. Neutralization assays with live SARS-CoV-2 were performed. RESULTS: One thousand four hundred and seventy-seven individuals were included comprising 112 SARS-CoV-2 positives (defined as a positive real-time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS-CoV-2 positive individuals, 96.3% showed full neutralization of live SARS-CoV-2 at serum dilutions ≥ 1:16, while none of the 6 SARS-CoV-2-negative sera revealed neutralizing activity. CONCLUSIONS: ELISAs targeting RBD and S1 protein of SARS-CoV-2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL